Refine your search:     
Report No.
 - 
Search Results: Records 1-2 displayed on this page of 2
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Local gas-liquid two-phase flow characteristics in rod bundle geometry

Xiao, Y.*; Shen, X.*; Miwa, Shuichiro*; Sun, Haomin; Hibiki, Takashi*

Konsoryu Shimpojiumu 2018 Koen Rombunshu (Internet), 2 Pages, 2018/08

In order to develop constitutive equations of two-fluid model in rod bundle flow channels, experiments of adiabatic air-water upward two-phase flow in 6$$times$$6 rod bundle flow channel were performed. Local flow parameters such as void fraction, interfacial area concentration (IAC) and so on were measured by a double-sensor optical probe. The area-averaged void fraction and IAC data were compared with the predictions from a drift-flux model and an IAC correlation.

Journal Articles

Study on gas-liquid two-phase flow distribution in a tight-lattice rod bundle

Onuki, Akira; Shibata, Mitsuhiko; Tamai, Hidesada; Akimoto, Hajime; Yamauchi, Toyoaki*; Mizokami, Shinya*

Nihon Konsoryu Gakkai Nenkai Koenkai 2003 Koen Rombunshu, p.35 - 36, 2003/07

Analytical evaluation of maximum critical power by so-called subchannnel code is indispensable for design of reduced moderation water reactor. In this study, two-phase flow distribution in a tight-lattice rod bundle is investigated using 19-rod bundle experimental rig and subchannnel analysis code NASCA. The flow distribution was measured under so-called churn flow regime and the predictive capability of NASCA was assessed. NASCA can predict the flow distribution qualitatively depending on local pressure drop. Quantitative prediction is also reasonable for liquid phase but the gas phase distribution was underestimated. Void-drift model has a dominant contribution and we should improve the model for the tight-lattice rod bundle.

2 (Records 1-2 displayed on this page)
  • 1